Get started
IMPACT 2025
Resources/Blog/

The manufacturing industry has a sensor problem. Here’s how to fix it

The manufacturing industry has a sensor problem. Here’s how to fix it

  • Operational workflows
  • Data Contextualization
  • Generative AI

Published at: 9/16/2020, 1:20:00 PM

Team Cognite

Cognite

Picture this scenario:

A building materials company has just produced a fresh batch of cement. To test the quality of the cement, the company then produces a concrete element. Weeks later, once the concrete has hardened, the quality control turns up an issue. The cement wasn’t up to standard.

Why wasn’t the issue detected earlier? In this scenario, there wasn’t a live sensor that could predict the quality of the finished product early on in the production process. But even in the cases where sensors do exist, they sometimes stop working — or are never installed in the first place.

The manufacturing industry has a sensor problem. To fix it, we need to look at how other heavy-asset industries use machine learning and root cause analysis to produce data-driven predictions that manufacturers can act on with confidence to optimize production and reduce waste.

Lessons from the Oil and Gas Industry

The oil and gas industry has embraced the use of soft sensors, sometimes called virtual sensors. A soft sensor is a model that can predict a property indirectly by looking at other available sensors. In some situations the soft sensor can be a pure mathematical model, like computing fluid density by combining pressure and temperature measurements, information about the composition of the fluid, and the laws of thermodynamics. Such a soft sensor will give real-time predictions of the quality of the product, notifying operators and enabling them to perform mitigating actions before it’s too late.

Some phenomena are too complex to be modeled using pure mathematical models. This is where machine learning can fill the gap.

In these cases, the spot samples serve as our training data, telling us about the outcome of a certain combination of sensor values.

Even in cases where we can’t model the complete process using physics models, we can model subcomponents and input the results into a machine learning model. This is often called a Hybrid AI model, or Physics-Guided ML. This isn’t a mandatory step, but it is a way of improving the accuracy and reliability of a model.

Predicting whether or not the quality of a product will be up to standard is just the first step, however. We also need to predict why. This is called an automated root cause analysis (RCA). The RCA information is pulled from a similar model as the soft sensor, giving the manufacturer an indication of where in the process there is a problem and enabling them to troubleshoot more efficiently.

Finally, we need to predict how we can mitigate issues. Even though a manufacturer knows what the problem is, they rarely have the opportunity to directly influence a single parameter without disrupting several others. There is usually a limited number of control parameters and a limited parameter range.

This method will optimize on the control parameters inside of the allowed parameter range to recommend mitigating actions that reduce the problem, for example increasing the quality parameter to above a predetermined threshold.

Read also: The top digitalization trends and opportunities changing the manufacturing industry

Different Phenomena, Same Solution

Even though the manufacturing industry deals with its own processes and phenomena, we can tackle production optimization challenges by applying strategies and lessons from the oil and gas industry.

At Cognite, we’ve worked with digital frontrunners in the oil and gas industry, including Aker BP, OMV, and Wintershall Dea, to optimize processes and make their operations faster, safer, and more sustainable. We’ve codified all that experience into Cognite Data Fusion® (CDF) to help manufacturers draw insights from their data and unlock opportunities in real time.

Learn more: Cognite’s Industry Solutions for the Manufacturing Industry

  • Blog - Generative AI

    What is Industrial AI? (And Why Most Companies Get It Wrong)

  • Blog - Generative AI

    Cognite Atlas AI Hackathon: 24 Hours of Rapid Innovation

  • Blog - Data Contextualization

    Reliability Redefined: Using Proactive Maintenance and Digital Workflows for Peak Performance

Want to learn more about our product?

Sign up for our monthly newsletter

Sign up today to receive new content, news, product updates and more, delivered directly to your inbox

Sign up for Cognite Newsletter

Your monthly Cognite news, product updates, and expert content

Product

Unique Value

Why Cognite

Strong Industrial Heritage

FAQ

Benefits

Digital Transformation Leaders

Executives

Operations Teams

IT Teams

Offering

Cognite Data Fusion®

Cognite Atlas AI™

Cognite Success Tracks

Get Started: Data Fusion Quick Start

Industrial Tools

Industrial Canvas

Field Operations

Maintenance

Robotics

Explore

Cognite Demos

Cognite Product Tour

Solutions

Industries

Upstream Energy

Downstream Energy

Continuous Process Manufacturing

Power Generation

Power Grid

Renewables

Solution areas

Advanced Troubleshooting

Field Operations

Data-Driven Turnaround Planning

Partner Ecosystem

Partners

Cognite Embedded

Customers

Success Stories

Value Review

Resources

Resources

All Resources

Webinars

LLM/SLM Benchmark Report

The Definitive Guide to...

... Industrial Agents

... Generative AI for Industry

... Industrial DataOps

Other

Company

About us

Newsroom

Careers

Leadership

Security

Ethics

Sustainability

Policies

Code of Conduct

Customer & Partner Privacy

General Privacy

Human Rights Policy

Vulnerability disclosure policy

Recruitment Privacy Notice

Report a Concern

Privacy PolicyTerms of Use

2016-2025 © Cognite AS. All Rights Reserved