<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=1719028&amp;fmt=gif">

Reduce cost and drive data literacy with DataOps

by Petteri Vainikka

The oil price war, capital market uncertainties, and the novel coronavirus leave no part of enterprise operations unaffected. These unprecedented times compel us to examine our operational efficiency and resilience, including how we operationalize data to address the needs of our diverse data consumers.

What can digital and data management leaders do to reduce cost, drive data literacy and improve data value capture in times of austerity and uncertainty?


What’s wrong with the way we operationalize data today?

It is no secret that data management and analytics workflows[1] have always been complex, siloed, and costly to enterprises all over the world. Adding insult to injury,

  1. the rise of AI/ML with difficult to find data scientist is imposing its own set of - often very differentiated from conventional BI user - requirements on data modelling, data source availability, data integrity, and out-of-the-box contextual metadata on data;
  2. data engineers working on industrial digitalization projects struggle with access to key source system data that is reminiscent of year 2010 in non-industrial verticals;
  3. industrial companies are not only facing the same challenges as, for example, their retail peers, but are presented with a superset of challenges resulting from the IT/OT convergence and associated nonconventional-IT-only data velocity, variety, and volume; and
  4. rushing to show digital execution, many have embraced the AI hype that has led to quickly demonstrable digital proof-of-concepts, yet is failing to yield truly operationalized - and even less scaled - concrete business OPEX value.
Screenshot 2020-03-23 at 15.05.29

A typical data pipeline for analytics with associated workflow challenges. Source: Gartner

 

Screenshot 2020-03-23 at 15.06.24

The IT/OT divide is converging over time.

Your industry and your data culture are changing — you need DataOps

Similar to DevOps, DataOps has a compelling and topical value proposition. With DataOps, you reduce specialized roles in your data-to-value workflows and enable higher data consumer autonomy and empowerment, thus creating higher resilience and a more lean and cost-efficient core for digital transformation.

According to Gartner, ‘the goal of DataOps is to create predictable delivery and change management of data, data models and related artifacts. DataOps uses technology to orchestrate and automate data delivery with the appropriate levels of security, quality and metadata to improve the use and value of data in a dynamic environment.”

Not convinced DataOps is applicable to your organization and industry? Let’s look at the recent market research data.

Screenshot 2020-03-23 at 15.08.53

 

Similar to DevOps for professionally developed software, DataOps and low-code form the technological foundation for citizen data science- and citizen-developed applications.


DataOps is key to increasing data literacy. Data literacy is key to securing value from data and digital.

Enabling all data consumers to have instant access to all data with context -- what we at Cognite call contextualized data -- is not easy. We know.

But imagine what your data consumers can do when they are all empowered to speak data, to independently and collectively access all relevant, contextualized data, and to safely develop the next generation of productivity-enhancing digital applications -- unleashing the transformative potential of Excel 2.0 for your business.

Gartner defines data literacy as “the ability to read, write and communicate data in context.”

Share experiences and learn from peers

Leading change during times of disruption is not always straightforward. To guide digital leaders, Cognite is creating a research report to help digital leaders in industry with knowledge sharing in this time of collective upheaval. Participate now and receive a complementary copy of the report.

About Cognite

Cognite is a global industrial AI Software-as-a-Service (SaaS) company supporting the full-scale digital transformation of heavy-asset industries around the world. Their key product, Cognite Data Fusion (CDF), empowers companies with contextualized OT/IT data to drive industrial applications that increase safety, sustainability, and efficiency, and drive revenue.

Be a part of our research report to help digital leaders in industry through this time of collective upheaval and receive your free copy. Participate today!


Petteri VainikkaPETTERI VAINIKKA - VICE PRESIDENT OF PRODUCT MARKETING: Petteri’s professional career spans across enterprise SaaS technologies, where he has found himself at the intersection of emerging transformational technology development and its commercial applications for customers. Prior to Cognite, Petteri worked in senior product management, marketing, sales, and general management positions for companies such as at Sumea, Rovio, and Cxense. Petteri has a master’s degree in technology from Aalto University in Helsinki.