
2020 has certainly been an eventful year, with even the most conservative new technology adopter organizations being forced to take a digital leap that certainly would have been unimaginable had it not been for the unprecedented global pandemic acting as catalyst for digital-by-necessity.
- For those looking for more general technology predictions, there is no shortage of well-researched examples published around this time of the year by the likes of IDC, Forrester and Gartner as examples; and
- This is not another vague prediction on how digital twins will transform industry (there is equally no shortage of great research and predictions on this topic dating back a good decade at the convenience of any web search engine)
Augmentation, Democratisation and Consumerization
![]() |
Corporate data governance gives way to democratized ambient data governance |
Organizations need to be able to apply different styles of governance for different types of data and analytics. Data governance topics such as data quality and data lineage transparency move from being a centralized, use case agnostic practice; to becoming intrinsically linked to actual data consumers and their data-driven use case requirements. Through this paradigm shift, data governance — and master data management — is no longer a roadblock (or tax) on faster use case execution and greater use case development team autonomy, but becomes infused into use case solving itself. As first step, we predict that data discovery will become an indistinguishable part of data governance.
Learn more: The truth about industrial digitalization
![]() |
AI teaches ET/OT/IT data to speak human |
AI-driven active metadata creation permeates industrial data management, shifting the emphasis from data storage and cataloging to a true human data discovery experiences. For application developers and data scientist, understanding — and handling — industrial data is not as straight forward as dealing with most tabular data. What is even more difficult (for all who are not SMEs with years of intimate experience with the asset) is understanding the context of, as well as further contextually related, industrial data. Using NLP, OCR, computer vision, trained ontologies and graph data models, ET/OT/IT will be automatically contextualized for intuitive human as well as programmatic discovery and analysis.
Learn more: Data management (r)evolution in the age of AI and the citizen data scientist
![]() |
Enterprises will invest more in metadata (and its management) than in data (and its management) itself |
Data science teams are scrambling to convert the contents of their data warehouses and data lakes into business value (not that DS is the only data consumer class by far, but they are the ones with the highest expectations to delivery transformative solutions.) Data lakes have become data swamps. To fulfill the market’s demand for human understandable data, despite an increasingly complex data landscape, metadata management is stepping up, driven by expansion of Chief Data Office (CDO) mandate to including metadata ownership (from the CIO).
Read also: What is data fabric and how does it complement my data warehouse?
|
Data operations — or DataOps — will connect data managers to data consumers in real-time, at unprecedented scale |
DataOps is collaborative data management for the AI era. The convergence of data management with data analytics continues to accelerate, driven by an exponential growth in data literacy aspiring data consumers. Seamless data operationalization across all workflow steps ranging from data sources to live applications becomes the new ‘data trapped in source system siloes’ challenge for digital and innovation leaders.
Learn more: DataOps: A transformative new approach to data ROI
About Cognite
Cognite is a global industrial AI Software-as-a-Service (SaaS) company supporting the full-scale digital transformation of heavy-asset industries around the world. Their key product, Cognite Data Fusion (CDF), empowers companies with contextualized OT/IT data to drive industrial applications that increase safety, sustainability, and efficiency, and drive revenue.
PETTERI VAINIKKA, VICE PRESIDENT OF PRODUCT MARKETING: Petteri’s professional career spans across enterprise SaaS technologies, where he has found himself at the intersection of emerging transformational technology development and its commercial applications for customers. Prior to Cognite, Petteri worked in senior product management, marketing, sales, and general management positions for companies such as at Sumea, Rovio, and Cxense. Petteri has a master’s degree in technology from Aalto University in Helsinki.